Admin Welcomes U MATHS, Anna University Question Bank Engineering Mathematics -1, CSE FIRST, ECE FIRST, EEE FIRST, EEE FIRST, FIRST SEMESTER, IT FIRST, ~ ANNA UNIVERSITY QUESTION BANKS PAPERS WITH SOLUTIONS

JOIN WITH US :)

If any add appear like this please click skip add

Category

INFO

CLICK HERE
FOR LATEST RESULTS
LATEST NEW TIME TABLE/EXAM DATES FOR ALL LINK1 LINK2
ANNA UNIVERSITY COLLEGES RANK LIST 2012 CHECK SOON
LATEST FREE PLACEMENT PAPERS FOR ALL COMPANIES CHECK SOON
GET FREE MINI PROJECTS AND FINAL YEAR PROJECTS CLICK HERE
LATEST HOT HACKING TRICKS CLICK HERE

LATEST QUESTION BANKS /PAPERS/entrance FOR ALL EXAMS CLICK HERE link1 link2




our sites
www.tricksnew.blogspot.com www.questionbank.tk
www.freeminiproject.blogspot.com and
www.onlineinfocity.
blogspot.com


NOTE:

FEEL FREE TO CONTACT US click on me
DONT FORGET TO SUBSCRIBE YOUR MAIL ID ----->>>TO GET DAILY question banks IN YOUR INBOX::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: SEE RIGHT SIDE CORNER

Sunday, November 4, 2012

MATHS, Anna University Question Bank Engineering Mathematics -1, CSE FIRST, ECE FIRST, EEE FIRST, EEE FIRST, FIRST SEMESTER, IT FIRST,

MATHS, Anna University Question Bank Engineering Mathematics -1, CSE FIRST, ECE FIRST, EEE FIRST, EEE FIRST, FIRST SEMESTER, IT FIRST, 
B.E./B.Tech.Degree Examinations, November/December 2010
Regulations 2008
First Semester
Common to all branches
MA2111 Mathematics I
Time: Three Hours Maximum: 100 Marks
Answer ALL Questions
Part A - (10 x 2 = 20 Marks)
1. If ¡1 i s an eigen value of the matrix A = ยต 1 ¡2
¡3 2 ¶, ¯nd the eigen values of A4
using properties.
2. Use Cayley-Hamilton theorem to ¯nd A4 ¡ 8A3 ¡ 12A2 when A = · 5 3
1 3 ¸:
3. Find the centre and radius of the sphere 2(x2 + y2 + z2) + 6x ¡ 6y + 8z + 9 = 0.
4. State the conditions for the equation ax2 +by2 +cz2 +2fyz +2gzx+2hxy +2ux+
2vy + 2wz + d = 0 to represent a cone with vertex at the origin.
5. Find the radius of curvature of y = ex at x = 0.
6. Find the envelope of the family of straight lines y = mx +
1
m
, where m is a
parameter.
7. If u = f(x ¡ y; y ¡ z; z ¡ x), show that
@u
@x
+
@u
@y
+
@u
@z
= 0.
8. If u =
x + y
1 ¡ xy
and v = tan¡1 x + tan¡1 y, ¯nd
@(u; v)
@(x; y)
.
 132  132  132 
9. Evaluate
1 Z0
2 Z0
ex+y dx dy.
10. Evaluate
1 Z0
2 Z0
3 Z0
xyzdzdydx:
Part B - (5 x 16 = 80 Marks)
11. (a) (i) Using Cayley-Hamilton theorem, ¯nd the inverse of the matrix A = 24
¡1 0 3
8 1 7
¡3 0 8
35
.
(8)
(ii) Find the eigen values and eigen vectors of the matrix 24
2 2 1
1 3 1
1 2 2
35
.
(
8
)
OR
11. (b) Reduce the quadratic form
2x2
1 + x2
2 + x2
3 + 2x1x2 ¡ 2x1x3 ¡ 4x2x3
to canonical form by an orthogonal transformation. Also ¯nd the rank, index,
signature and nature of the quadratic form. (16)
12. (a) (i) Find the equation of the sphere having its centre on the plane 4x¡5y¡z =
3 and passing through the circle x2 + y2 + z2 ¡ 2x ¡ 3y + 4z + 8 = 0;
x ¡ 2y + z = 8. (8)
(ii) Find the equation of the right circular cone whose vertex i s the origin,
whose axis i s the line
x
1
=
y
2
=
z
3
and which has semi-vertical angle 30±.
(8)
OR
12. (b) (i) Find the equation of the sphere passing through the circle x2 + y2 + z2 +
x¡3y +2z ¡1 = 0, 2x+5y ¡z +7 = 0 and cuts orthogonally the sphere
x2 + y2 + z2 ¡ 3x + 5y ¡ 7z ¡ 6 = 0. (8)
(ii) Find the equation of the right circular cylinder whose axis is
x ¡ 1
2
=
y ¡ 2
1
=
z ¡ 3
2
and radius 2. (8)


13. (a) (i) Find the equation of the circle of curvature of the curve px + py = pa
at ³a
4
;
a
4´. (8)
(ii) Prove that the radius of curvature of the curve xy2 = a3 ¡x3 at the point
(a, 0) is
3a
2
: (8)
OR
13. (b) (i) Show that the evolute of the hyperbola
x2
a2 ¡
y2
b2 = 1 i s (ax)2=3 ¡(by)2=3 =
(a2 + b2)2=3. (10)
(ii) Find the envelope of
x
a
+
y
b
= 1, where a and b are connected by the
relation a2 + b2 = c2; c being constant. (6)
14. (a) (i) Find the Taylor's series expansion of ex cos y in the neighborhood of the
point ³1;
¼
4 ´ upto third degree terms. (8)
(ii) If u = log(x2 + y2) + tan¡1 ³y
x´, prove that uxx + uyy = 0. (8)
OR
14. (b) (i) Discuss the maxima and minima of the function f(x; y) = x4 +y4 ¡2x2 +
4xy ¡ 2y2. (8)
(ii) Find the Jacobian of y1; y2; y3 with respect to x1; x2; x3 if y1 =
x2x3
x1
; y2 =
x3x1
x2
; y3 =
x1x2
x3
. (8)
15. (a) (i) Evaluate
1 Z0
1 Zx
e¡y
y
dx dy by changing the order of integration. (8)
(ii) Evaluate
1 Z0
1 Z0
e¡(x2+y2) dx dy by converting to polar coordinates. Hence
deduce the value of
1 Z0
e¡x2
dx. (8)
OR
15. (b) (i) Using triple integration, ¯nd the volume of the sphere x2 + y2 + z2 = a2.
(8)
(ii) Find the area bounded by the parabolas y2 = 4 ¡ x and y2 = x by double
integration. (8)

Reactions:

0 comments:

chitika